lei matemática - significado y definición. Qué es lei matemática
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:     

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es lei matemática - definición

EXERCÍCIOS DE PROPOSIÇÃO
Lógica Matemática; Matemática lógica

Matemática babilônica         
  • A tabuleta [[Plimpton 322]].
Matemática babilónica
Matemática Babilônica (também conhecido como Matemática Assírio-BabilônicaLewy, H. (1949).
discreta         
Matemática Discreta; Quantidade discreta; Discreta
sf (fem de discreto) Religiosa assistente da superiora.
Lei científica         
Lei física; Lei (ciências); Lei (ciência); Leis da natureza
Lei, no sentido científico, é uma regra com base em algum fenômeno que ocorra com regularidade observada. É uma generalização que vai além das nossas observações limitadas, que, sendo exaustivamente confrontada, testada e validada frente a um amplo e diverso conjunto de fatos, dá-lhes sempre sentido cronológico, lógico e causal, podendo fazer previsões testáveis para o futuro, e por tal recebe um título "honorífico" que a destaca entre as demais, o título de lei.

Wikipedia

Lógica matemática

A lógica matemática é uma subárea da matemática que explora as aplicações da lógica formal para a matemática. Basicamente, tem ligações fortes com matemática, os fundamentos da matemática e ciência da computação teórica. Os temas unificadores na lógica matemática incluem o estudo do poder expressivo de sistemas formais e o poder dedutivo de sistemas de prova matemática formal.

A lógica matemática é muitas vezes dividida em campos da teoria dos conjuntos, teoria de modelos, teoria da recursão e teoria da prova. Estas áreas compartilham resultados básicos sobre lógica, particularmente lógica de primeira ordem, e definibilidade. Na ciência da computação, especialmente na classificação ACM, onde ACM vem do inglês (Association for Computing Machinery), lógica matemática engloba tópicos adicionais não descritos neste artigo; ver lógica em ciência da computação para este tópico anterior.

Desde o seu surgimento, a lógica matemática tem contribuído e motivado pelo estudo dos fundamentos da matemática. Este estudo foi iniciado no final do século XIX, com o desenvolvimento de arcabouço axiomático para geometria, aritmética e análise. No início do século XX a lógica matemática foi moldada pelo programa de David Hilbert para provar a consistência das teorias fundamentais. Os resultados de Kurt Godel, Gerhard Gentzen, e outros, desde resolução parcial do programa, e esclareceu as questões envolvidas em provar a consistência. O trabalho na teoria dos conjuntos mostrou que quase toda a matemática ordinária pode ser formalizada em termos de conjuntos, embora existam alguns teoremas que não podem ser demonstrados em sistemas axiomáticos comuns para a teoria dos conjuntos. O trabalho contemporâneo nos fundamentos da matemática, muitas vezes se concentra em estabelecer quais as partes da matemática que podem ser formalizadas, em particular, sistemas formais (como em matemática reversa) ao invés de tentar encontrar as teorias em que toda a matemática pode ser desenvolvida.